GAUSS QUADRATURE

• In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

$$\int_{x_{S}} f(x)dx = h[w'_{o} f_{o} + w'_{1} f_{1} + \dots + w'_{N} f_{N}] + E$$

• Note that for Newton-Cotes formulae only the weighting coefficients w_i were unknown and the x_i were fixed

- However the number of and placement of the integration points influences the accuracy of the Newton-Cotes formulae:
 - N even $\rightarrow N^{th}$ degree interpolation function exactly integrates an $N+1^{th}$ degree polynomial \rightarrow This is due to the placement of one of the data points.
 - N odd $\rightarrow N^{th}$ degree interpolation function exactly integrates an N^{th} degree polynomial.
- Concept: Let's allow the placement of the integration points to vary such that we further increase the degree of the polynomial we can integrate exactly for a given number of integration points.
- In fact we can integrate an 2N + 1 degree polynomial exactly with only N + 1 integration points

• Assume that for Gauss Quadrature the form of the integration rule is

$$\int_{x_S}^{x_E} f(x) dx = [w_o f_o + w_1 f_1 + \dots + w_N f_N] + E$$

- In *deriving* (not applying) these integration formulae
 - Location of the integration points, x_i i = O, N are unknown
 - Integration formulae weights, w_i i = O, N are unknown
- 2(N+1) unknowns \rightarrow we will be able to exactly integrate any 2N+1 degree polynomial!

Derivation of Gauss Quadrature by Integrating Exact Polynomials and Matching

Derive 1 point Gauss-Quadrature

- 2 unknowns w_o , x_o which will exactly integrate any linear function
- Let the *general* polynomial be

$$f(x) = Ax + B$$

where the coefficients A, B can equal any value

• Also consider the integration interval to be [-1, +1] such that $x_S = -1$ and $x_E = +1$ (no loss in generality since we can always transform coordinates).

$$\int_{-1}^{+1} f(x)dx = w_o f(x_o)$$

• Substituting in the form of f(x)

$$\int_{-1}^{+1} (Ax + B)dx = w_o(Ax_o + B) \implies$$

$$\left[A\frac{x^2}{2} + Bx\right]_{-1}^{+1} = w_o(Ax_o + B) \Rightarrow$$

$$A(0) + B(2) = A(x_o w_o) + B(w_o)$$

• In order for this to be true for <u>any</u> 1st degree polynomial (i.e. any A and B).

$$\begin{pmatrix} 0 = x_o w_o \\ 2 = w_o \end{pmatrix}$$

• Therefore $x_o = 0$, $w_o = 2$ for 1 point (N = 1) Gauss Quadrature.

• We can integrate exactly with only 1 point for a linear function while for Newton-Cotes we needed two points!

Derive a 2 point Gauss Quadrature Formula

• The general form of the integration formula is

$$I = w_o f_o + w_1 f_1$$

- w_o, x_o, w_1, x_1 are all unknowns
- 4 unknowns ⇒ we can fit a 3rd degree polynomial exactly

$$f(x) = Ax^3 + Bx^2 + Cx + D$$

• Substituting in for f(x) into the general form of the integration rule

$$\int_{-1}^{+1} f(x)dx = w_o f(x_o) + w_1 f(x_1)$$

$$\int_{-1}^{+1} [Ax^{3} + Bx^{2} + Cx + D] dx = w_{o} [Ax_{o}^{3} + Bx_{o}^{2} + Cx_{o} + D] + w_{1} [Ax_{1}^{3} + Bx_{1}^{2} + Cx_{1} + D]$$

$$\Rightarrow$$

$$\left[\frac{Ax^{4}}{4} + \frac{Bx^{3}}{3} + \frac{Cx^{2}}{2} + Dx \right]_{-1}^{+1} = w_{o} (Ax_{o}^{3} + Bx_{o}^{2} + Cx_{o} + D) + w_{1} (Ax_{1}^{3} + Bx_{1}^{2} + Cx_{1} + D)$$

$$\Rightarrow$$

$$A[w_{o}x_{o}^{3} + w_{1}x_{1}^{3}] + B[w_{o}x_{o}^{2} + w_{1}x_{1}^{2} - \frac{2}{3}] + C[w_{o}x_{o} + w_{1}x_{1}] + D[w_{o} + w_{1} - 2] = 0$$

• In order for this to be true for *any* third degree polynomial (i.e. all arbitrary coefficients, A, B, C, D), we must have:

$$w_{o}x_{o}^{3} + w_{1}x_{1}^{3} = 0$$

$$w_{o}x_{o}^{2} + w_{1}x_{1}^{2} - \frac{2}{3} = 0$$

$$w_{o}x_{o} + w_{1}x_{1} = 0$$

$$w_{o} + w_{1} - 2 = 0$$

• 4 nonlinear equations \rightarrow 4 unknowns

$$w_o = 1$$
 and $w_1 = 1$

$$x_o = -\sqrt{\frac{1}{3}}$$
 and $x_1 = +\sqrt{\frac{1}{3}}$

• All polynomials of degree 3 or less will be *exactly* integrated with a Gauss-Legendre 2 point formula.

Gauss Legendre Formulae

$$I = \int_{-1}^{+1} f(x)dx = \sum_{i=0}^{N} w_i f_i + E$$

N	N + 1	i = 0, N	w_i	Exact for polynomials of degree
0	1	0	2	1
1	2	$-\sqrt{\frac{1}{3}}$, $+\sqrt{\frac{1}{3}}$	1, 1	3
2	3	-0.774597, 0, +0.774597	0.5555, 0.8889, 0.5555	5
N	N + 1			2 <i>N</i> + 1

N	N + 1	i = 0, N	w_i	Exact for polynomials of degree
3	4	-0.86113631	0.34785485	7
		-0.33998104	0.65214515	
		0.33998104	0.65214515	
		0.86113631	0.34785485	
4	5	-0.90617985	0.23692689	9
		-0.53846931	0.47862867	
		0.00000000	0.56888889	
		0.53846931	0.47862867	
		0.90617985	0.23692689	
5	6	-0.93246951	0.17132449	11
		-0.66120939	0.36076157	
		-0.23861919	0.46791393	
		0.23861919	0.46791393	
		0.66120939	0.36076157	
		0.93246951	0.17132449	

- Notes
 - N + 1 = the number of integration points
 - Integration points are symmetrical on [-1, +1]
 - Formulae can be applied on any interval using a coordinate transformation
 - N + 1 integration points \rightarrow will integrate polynomials of up to degree 2N + 1 exactly.
 - Recall that Newton Cotes $\rightarrow N+1$ integration points only integrates an $N^{th}/N+1^{th}$ degree polynomial exactly depending on N being odd or even.
 - For Gauss-Legendre integration, we allowed both weights and integration point locations to vary to match an integral exactly ⇒ more d.o.f. ⇒ allows you to match a higher degree polynomial!
 - An alternative way of looking at Gauss-Legendre integration formulae is that we use Hermite interpolation instead of Lagrange interpolation! (How can this be since Hermite interpolation involves derivatives → let's examine this!)

Gaussian Quadrature on Arbitrary Intervals

An integral $\int_a^b f(x) dx$ over an arbitrary [a, b] can be transformed into an integral over [-1, 1] by using the change of variables (see Figure 4.17):

$$t = \frac{2x - a - b}{b - a} \Longleftrightarrow x = \frac{1}{2}[(b - a)t + a + b].$$

Figure

This permits Gaussian quadrature to be applied to any interval [a, b], because

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{(b-a)t + (b+a)}{2}\right) \frac{(b-a)}{2} dt.$$

Examples (2-point Gauss-Legendre integration)

Q1) Evaluate the integral
$$I=\frac{1}{2}\int_{-1}^{1}e^{-(1+x)^2/4}dx$$

Soln. Since the 2-point Gauss-Legendre formula yields:

$$\int_{-1}^{1} f(x)dx = 1 * f\left(\frac{1}{\sqrt{3}}\right) + 1 * f\left(-\frac{1}{\sqrt{3}}\right)$$

We have
$$I = \frac{1}{2} \left[e^{-\left(\frac{1 + \frac{1}{\sqrt{3}}}{2}\right)^2} + e^{-\left(\frac{1 - \frac{1}{\sqrt{3}}}{2}\right)^2} \right] = 0.746594688$$

The true solution is 0.7468241328.....

Q2) Evaluate the integral
$$I = \int_{-1}^{1} \frac{1}{2+x} dx$$

Soln.: Using the 2-point Gauss-Legendre formula gives
$$I = \frac{1}{2 + \frac{1}{\sqrt{3}}} + \frac{1}{2 - \frac{1}{\sqrt{3}}} \approx 1.0909090909.... \text{ where as the true solution is}$$

$$I = \log 3 - \log 1 = 1.09861228866811$$

Homework:

Q3) Evaluate $I = \int_{1}^{3} x^{6} - x^{2} \sin(2x) dx$ using the 2-point and 3-point Gauss-Legendre formula.

Hint: Make sure to use the transformation of coordinates to change the limits of integration from $\int_{1}^{3} (\cdot) dx \text{ to } \int_{1}^{1} (\cdot) dx$